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Introduction Framework

Semiparametric generalized partially linear model

yi |(xi , zi ) ∼ F (., µi ) canonical exponential family, zi ∈ [0, 1]

exp {[yθ(x, z)− B (θ(x, z))] /A(κ0) + C (y , κ0)} ,

Var(yi |(xi , zi )) = A2(κ0)V (µi ) with V : R→ R known function.

µi = E(yi |(xi , zi )) = µ (xi , zi )

µ (x, z) = H (xtβ0 + η0(z))

I β0 ∈ Rp is an unknown parameter.

I η0 : [0, 1]→ R is a continuous function.

I κ0: nuisance parameter
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Introduction Framework

Isotonic generalized partially linear model

We add a monotone constraint on the nonparametric
component:

We assume that η0 is non–decreasing.
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Introduction Framework

Adding monotonicity to the GPLM

In many applications, monotonicity is a desired property.

When β = 0, Ramsay (1988) studied the relation between the
incidence of Down’s syndrome and the mother’s age.

Leitenstorfer and Tutz (2006) studied the air pollution (São Paulo) to
evaluate the association between the number of daily deaths of elderly
people for respiratory causes and the concentration of SO2, CO,
PM10 and O3.

Lu (2014) studied air pollution(Mexico City). The response y was
daily death count, the covariates are

I z = PM10 = the daily mean ambient concentration of fine particle air
pollutants < 10µm

I x = the daily mean temperature and daily rainfall indicator.
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Introduction Framework

Semi-parametric estimation
When H(t) = t

Huang (2002): LS under constrains.

Lu (2010): ML estimators based on B−splines.

Wang and Huang (2002): Robust isotonic estimators (β = 0).

Álvarez and Yohai (2012): M−isotonic regression estimators (β = 0).

Du et al. (2013): M−estimators based on monotone B−splines with known

scale.

Under a gplm

Boente et al. (2006): Robust profile kernel based estimators of η and β (no
restrictions on η)

Boente and Rodriguez (2010): Robust two–step kernel based estimators of η
and β (no restrictions on η)

Lu (2014): Monotone B−splines estimators based on the quasi–likelihood.
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Introduction Framework
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Introduction Robust monotone B−splines

Splines and monotonicity

Consider the knots Zn = {ξi}mn+2`
i=1 where

0 = ξ1 = · · · = ξ` < ξ`+1 < · · · < ξmn+`+1 = · · · = ξmn+2` = 1

and denote as Sn(Zn, `) the class of splines of order ` > 1 with knots Zn.

Schumaker (1981)

There exist a class of B−spline basis functions {Bj : 1 ≤ j ≤ kn}, with

kn = mn + `, such that g =
∑kn

j=1 ajBj , for any g ∈ Sn(Zn, `).

The spline g is nondecreasing on [0, 1] if a1 ≤ · · · ≤ akn .
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Robust estimators The Proposal

Robust Estimators

To obtain Robust estimators, combine monotone B−splines

Loss function that
bounds residuals

Weight function
to control

the effect of leverage points

φ : R3 → R: loss function
w : Rp → R: weight
function to control leverage
of x
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Robust estimators The Proposal

Robust estimators
κ̂: robust consistent estimator of the nuisance parameter κ0.

The estimators

(β̂, η̂) = (β̂,
kn∑
j=1

âj Bj)

where

(β̂, â) = argmin
b∈Rp ,a∈Lkn

1

n

n∑
i=1

φ

yi , x
t
i b +

kn∑
j=1

aj Bj(zi ), κ̂

w(xi ) ,

Lkn = {a ∈ Rkn : a1 ≤ · · · ≤ akn} .
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Robust estimators Some examples

Loss functions: Bounding the deviances

φ(y , u, κ) = ρc [d(y ; u)] + G (H(u)) , c = c(κ)

ρc odd and bounded nondecreasing function with continuous
derivative ϕc .

c is a tuning parameter.

G guarantees Fisher–consistency.

G ′(s) =

∫
ψc [d(y ; u)] f ′(y , s)dµ(y) = Es

(
ψc [d(y ; u)]

f ′(y , s)

f (y , s)

)
,

Es expectation taken under F (·, s) and f ′(y , s) = ∂
∂s f (y , s).

When yi |(xi , zi ) has a density, G (s) ≡ 0 (Bianco et al., 2005).
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Robust estimators The PLM case

The partial linear model: Symmetric errors

y = βt0 x + η0(z) + u , u ∼ G0(·/σ0)

κ0 is scale parameter σ0 and

φ(y, s, κ) = ρc

(
y − s

κ

)
,

I ρc(t) = ρ(t/c) and ρ : R→ [0,∞) is a ρ−function

ρ: bisquare function

ρt, c(t) = min
(
1− (1− (t/c)2)3, 1

)
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Robust estimators The PLM case

PLM: Symmetric errors
1 Compute an unrestricted MM−estimator (β̂, η̂) = (β̂,

∑kn
j=1 âjBj)

(β̂, â) = argmin
b∈Rp ,a∈Rkn

1

n

n∑
i=1

ρc

(
yi − xti b−

∑kn
j=1 aj Bj(zi )

σ̂

)
,

σ̂ is the scale related to an S−estimator (Yohai, 1987)

2 If â
(0)
1 ≤ â

(0)
2 ≤ · · · ≤ â

(0)
kn

, then

I β̂ = β̂
(0)

I η̂(z) =
∑kn

j=1 â
(0)
j Bj(z).

3 Otherwise, use an IRWLS that takes into account the given
restrictions, that is, we approximate the minimization problem using
IRWLS subject to a1 ≤ · · · ≤ akn using quadratic programming.

Details
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(0)
j Bj(z).

3 Otherwise, use an IRWLS that takes into account the given
restrictions, that is, we approximate the minimization problem using
IRWLS subject to a1 ≤ · · · ≤ akn using quadratic programming.

Details

Workshop Innpar2D, December 10th 2019, USC



13

Robust estimators The PLM case

PLM: Symmetric errors
1 Compute an unrestricted MM−estimator (β̂, η̂) = (β̂,

∑kn
j=1 âjBj)
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Robust estimators The PLM case

PLM: Errors with exponential unimodal density

y = βt
0 x + η0(z) + u ,

Errors density

g0(u, α0) = Q(α0) expα0 ν(u) ,

I α0 > 0 an unknown parameter

I ν is a continuous function with unique maximum at u0

I Log–Gamma case: ν(s) = s − exp(s), u0 = 0
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Robust estimators The PLM case

PLM: Errors with exponential unimodal density

y = βt0 x + η0(z) + u ,

Loss function: Bianco, Garćıa Ben & Yohai (2005)

φ(y, s, κ) = ρ

(√
d (y − s)

κ

)
,

d(s) = ν(u0)− ν(s).

ρ a ρ−function.

κ: tuning constant related to the parameter α0.
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Robust estimators The PLM case

PLM: Errors with exponential unimodal density

MM−estimator without restrictions

(
β̂

(0)
, â(0)

)
= argmin

(b,a)∈Rp+kn

n∑
i=1

ρ


√
d
(
yi −

[
xti b + atBi

])
κ̂n

w(xi ) ,

κ̂n is the tuning constant as in Bianco et al. (2005).

If â
(0)
1 ≤ â

(0)
2 ≤ · · · ≤ â

(0)
kn

, then

I β̂ = β̂
(0)

I η̂(z) =
∑kn

j=1 â
(0)
j Bj(z).
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Robust estimators The PLM case

PLM: Errors with exponential unimodal density

Otherwise, use a non–linear minimization algorithm with restrictions

choosing as initial value (β̂
(0)
, a(0)), where a(0) ∈ Lkn .

One possible choice for a0 is a0
1 = a0

2 = 0 and a0
i = i − 2 for

i = 3, . . . , kn.

Details
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Robust estimators Monotone modification

The increasing modification: Dette, Neumeyer & Pilz (2005),

Neumeyer (2007)

f : [a, b]→ R define

Υ(f )(u) =

∫ b

a
I{f (z)≤u}dz + a u ∈ R

Given f : [0, 1]→ R, the Increasing modification f imod : [0, 1]→ R is

f imod = Υ
(
Υ(f )I[f (0),f (1)]

)
I[0,1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f imod

f (x) =

5x3 + 4x − 8x2I0≤x≤1

Workshop Innpar2D, December 10th 2019, USC



18

Robust estimators Monotone modification

The increasing modification: Dette, Neumeyer & Pilz (2005),

Neumeyer (2007)

f : [a, b]→ R define

Υ(f )(u) =

∫ b

a
I{f (z)≤u}dz + a u ∈ R

Given f : [0, 1]→ R, the Increasing modification f imod : [0, 1]→ R is

f imod = Υ
(
Υ(f )I[f (0),f (1)]

)
I[0,1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f imod

f (x) =

5x3 + 4x − 8x2I0≤x≤1

Workshop Innpar2D, December 10th 2019, USC



19

Robust estimators Monotone modification

The monotone estimator of η

A monotone estimator of η : [0, 1]→ R may be
constructed as

η̂ imod = Υ
(
Υ(η̂)I[η̂(0),η̂(1)]

)
I[0,1]

from the unconstrained estimators.

Workshop Innpar2D, December 10th 2019, USC



20

Robust estimators Robust BIC for kn

Selection of kn

As in He and Shi (1996) and He, Zhu & Fung (2002), define

BIC (k) = log

1

n

n∑
i=1

ρ

yi , x
t
i b +

k∑
j=1

λj Bj(zi ), κ̂

w(xi )

+
log n

2 n
k .

A possible criterion is to search for the first (i.e. smallest k) local
minimum of BIC (k) in the range of

max

(
n1/5

2
, 4

)
≤ k ≤ 8 + 2 n1/5

when cubic splines are considered.
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Robust estimators Asymptotic behaviour

Assumptions

(yi , xi , zi )
t are i.i.d. observations satisfying a gplm model with η0

non-decreasing

η0 ∈ C r [0, 1] and η
(r)
0 is Lipschitz continuous

The maximum spacing of the knots is of order O(n−ν), 0 ≤ ν ≤ 1/2

kn = O(nν) for 1/(2r + 2) < ν < 1/(2r)

κ̂
a.s.−→ κ0

Workshop Innpar2D, December 10th 2019, USC



22

Robust estimators Asymptotic behaviour

Asymptotic results

Let ‖η0 − η̂‖2
L2(Q) = E(η0(t1)− η̂(t1))2.

a) ‖β̂ − β0‖2 + ‖η̂ − η0‖2
L2(Q)

a.s.−→ 0.

b) γn
(
‖β̂ − β0‖2 + ‖η̂ − η0‖2

L2(Q)

)
= OP(1), where

γn = nmin(rν, 1−ν
2

)

Hence, if ν = 1/(1 + 2r), the estimators converge at the optimal rate

nr/(1+2r) and ‖η̂ − η0‖∞
p−→ 0.

√
n(β̂ − β0)

D−→ N (0,Σ(θ0, κ0)) .
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Numerical experiments Monte Carlo Study

Monte Carlo study

NR = 1000 replications,

samples of size n = 100,

The uncontaminated sample, C0, is generated as follows:

(xi , zi ) independent of each other, xi ∼ N(0, 1), zi ∼ U(0, 1).

yi = β0xi + η0(zi ) + ui ,

ui ∼ log(Γ(3, 1)), β0 = 2

Two choices for the nonparametric component:

Model 1 η0,1(t) = sin(πt/2)
Model 2 η0,2(t) = π t + 0.25 sin(4πt)
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Numerical experiments Monte Carlo Study

Contaminations
We generate a sample vi ∼ U(0, 1) for 1 ≤ i ≤ n and then:

C1 introduces bad high leverage points in the carriers x, without
changing the responses already generated:

yi,c = yi xi,c =

{
xi if vi ≤ 0.90

x?i if vi > 0.90 ,

where x?i ∼ N (5, 1/16).

C2 introduces outlying observations in the responses generated
according to the model but with an incorrect carrier x.

yi,c =

{
yi if vi ≤ 0.90

y?i if vi > 0.90 ,
xi,c = xi

where y?i = β0x
?
i + η0(zi ) + u?i with

u?i ∼ log(Γ(3, 1)) x?i ∼ N (5, 1/16) ,
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Numerical experiments Monte Carlo Study

Contaminations

C3 corresponds to increasing the variance of the carriers x and
also to introduce large values on the responses

xi ,c =

{
xi if vi ≤ 0.90

a new observation from a N(0, 25) if vi > 0.90,

yi ,c =

{
yi if vi ≤ 0.90

y?i if vi > 0.90 ,

with y?i = 3 log(10) + u?i and u?i ∼ log(Γ(3, 1)).
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Numerical experiments Monte Carlo Study

Results under C0

Model 1

Summary measures for β̂ MISE(η̂)

Estimator Bias SD MSE AS.SE Cov.Prob

(a) cl 0.0002 0.0608 0.0037 0.0568 0.9340 0.0088
rob 0.0021 0.0672 0.0045 0.0620 0.9270 0.0096

(b) cl 0.0009 0.0613 0.0038 0.0565 0.9280 0.0118
rob -0.0000 0.0921 0.0085 0.0620 0.9060 0.0157

a) Monotone B−splines

b) Isotone Modification
ISE(η̂) =

1

n

n∑
i=1

(η̂(ti )− η0(ti ))2 .

We will only present the results obtained when η0 is estimated using
Monotone B−splines
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Numerical experiments Monte Carlo Study

Density estimators of β̂cl, Model 1.
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Numerical experiments Monte Carlo Study

Density estimators of β̂r, Model 1.
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Numerical experiments Monte Carlo Study

Performance of β̂, Model 1
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Numerical experiments Monte Carlo Study

Performance of η̂, Model 1
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Numerical experiments Monte Carlo Study

Performance of η̂: C0
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Numerical experiments Monte Carlo Study

Performance of η̂: C1
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Numerical experiments Monte Carlo Study

Performance of η̂: C2
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Numerical experiments Monte Carlo Study

Performance of η̂: C3
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Numerical experiments Monte Carlo Study

Performance of η̂: C3
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Numerical experiments Hospital Costs Data

Hospital Costs Data (Marazzi and Yohai, 2004)

The data set corresponds to the costs of 100 patients hospitalized at the Centre
Hospitalier Universitaire Vaudois in Lausanne (Switzerland) during 1999 for
medical back problems.

Aim: Study the relationship between the hospital cost of stay, y , and the
following administrative explanatory variables:

LOS length of stay in days

ADM admission type (0 = planned; 1 = emergency)

INS insurance type (0 = regular; 1 = private)

AGE years

SEX (0 = female; 1 = male)

DEST discharge destination (1 = home; 0 = another institution)
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Numerical experiments Hospital Costs Data

Linear fit approach

Cantoni and Ronchetti (2006) and Bianco et al. (2013) fitted a log–Gamma
model to the data,

wi |vi ∼ Γ(α, µi ) log(µi ) = log(E(zi |vi )) = γt0 vi

which is equivalent to a linear regression model with asymmetric errors

yi = log(wi ) = γt0 vi + ui ,

ui ∼ log Γ(α, 1)

v = (ADM, INS ,AGE ,SEX ,DEST , log(LOS), 1)

Using a robust QL approach Cantoni and Ronchetti (2006) identified 5 outliers

(i = 14, 21, 28, 44 and 63), affecting the classical estimates of INS and the shape

parameter.
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Numerical experiments Hospital Costs Data

Our setting

We will not impose a linear relation between log(yi ) and the log(LOS).

yi = βt0 xi + η0(zi ) + ui

ui ∼ log Γ(α, 1),

x = (ADM, INS ,AGE ,SEX ,DEST ), z = log(LOS).

η0 : R→ R is an increasing function.

BIC criterion:
I β̂cl kn = 4
I β̂r kn = 5 cρ = 0.3515
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Numerical experiments Hospital Costs Data

Hospital Costs Data
ADM INS AGE SEX DEST α̂

β̂cl 0.2148 0.0984 -0.0009 0.1088 -0.1358 21.0809
(0.0497) (0.0792) (0.0013) (0.0529) (0.0723)

β̂r 0.1979 -0.0207 -0.0019 0.0615 -0.1673 46.0088
(0.0339) (0.0537) (0.0009) (0.0358) (0.0493)

β̂
−{5}
cl 0.2172 -0.0324 -0.0016 0.0820 -0.1608 45.7560

(0.0345) (0.0575) (0.0009) (0.0354) (0.0489)

Analysis of Hospital Costs data, between brackets are reported the estimated asymptotic

standard deviations of the estimators.

As in the linear fit, the classical estimator of β are highly affected by the 5
outliers, which were also detected in our study.

After removing these 5 data points, the classical estimators β̂
−{5}
cl are very

similar to those obtained using β̂r, showing its good performance in
presence of outliers.
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Numerical experiments Hospital Costs Data

Hospital Costs Data

η̂(z) = 0.8892 z + 7.1268
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η̂cl in red
η̂r in blue

The linear fit (in black) seems to
be a good choice for this data set,
however, some discrepancies appear
near the boundary.

It is worth noting that in this case,
the shape of the classical estimator
(in red) is quite close to that of the
robust one (in blue).
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Numerical experiments Hospital Costs Data

Summary

We have defined a robust estimators for the regression parameter and
the nonparametric function under the constraint that η0 monotone.

Our estimators are consistent and attain the optimal convergence rate.

The estimators of the regression coefficient are asymptotically
normally distributed.

The simulation study illustrate the bad behaviour of the classical
estimator when outliers are present.

In particular, expected large responses affect the classical estimators
of the nonparametric component.
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Numerical experiments Hospital Costs Data

Thanks for your attention.
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Additional results Algorithms

Algorithm
Denote ψ = ρ′ and

ri (b, a) = yi − xti b−
kn∑
j=1

aj Bj(zi )

Step 1:
Let m = 0 and (b(0), a(0)) = (β̂, â) the MM−estimators computed
without restrictions and σ̂ the scale given in the S-step.
Step 2:

I Given m define the weights

wi,m = ψ

(
ri (b(m), a(m))

σ̂

)
σ̂

ri (b(m), a(m))

I Define

yw ,i = w
1/2
i,m yi , xw ,i` = w

1/2
i,m xi` , Bw ,i` = w

1/2
i,m B`(zi )
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Additional results Algorithms

Algorithm

Step 2:
I Define

yw ,i = w
1/2
i,m yi , xw ,i` = w

1/2
i,m xi` , Bw ,i` = w

1/2
i,m B`(zi )

I Let vi = (xw ,i1, . . . , xw ,ip1 ,Bw ,i1, . . . ,Bw ,ip2 )t, yw = (yw ,1, . . . , yw ,n)t

and d =
(
βt,λt

)t
. We solve the quadratic problem with monotone

restrictions

d̂ = min
b,a1≤···≤akn

‖yw − Vtd‖2 = min
b,a1≤···≤akn

n∑
i=1

wi,mr
2
i (b, a)

I Define b(m+1) as the first p components of d̂ and a(m+1) as the last
ones.

Go to step 2 and iterate until convergence.

Return
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Additional results Algorithms

Algorithm

Step 1.

Step 1.1 Compute an initial S−estimator ν̃ = (β̃n, ãn) as in Bianco et al.
(2005), i.e.,

ν̃n = argmin
b,a

σn(b, a)

where

1

n

n∑
i=1

ρ

(√
d(yi − btxi − atBi )

σn(b, a)

)
=

1

2
,

σ̂n = σn(β̃n, ãn)
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Additional results Algorithms

Algorithm

Step 1.2.

Let u ∼ log Γ(α, 1) and σ∗(α) the solution of

E

[
ρ

(√
1− u − exp(u)

σ∗(α)

)]
=

1

2
,

Compute

I α̂n = σ∗−1(σ̂n) I κ̂n = max(σ̂n,Ce(α̂n)).

Let ν̂(0)
n be WMM−estimator of ν defined as

ν̂(0)
n = argmin

(b,a)

n∑
i=1

ρ

(√
d(yi − btxi − atBi )

κ̂n

)
w(xi ).
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Additional results Algorithms

Algorithm

Step 2.

? If â
(0)
1 ≤ â

(0)
2 ≤ · · · ≤ â

(0)
kn

, the final estimators are β̂ = β̂
(0)

and

η̂(t) =
∑kn

j=1 â
(0)
j Bj(t).

? Otherwise, the final estimators are obtained using a standard
minimization algorithm with restrictions choosing as initial value

(β̂
(0)

n , a0), where a0 ∈ Lkn .
One possible choice for a0 is a0

1 = a0
2 = 0 and a0

i = i − 2 for
i = 3, . . . , kn.
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Additional results Algorithms

Algorithm: Generalised Rosen Algorithm (Jamshidian,
2004)

Denote ∇̂ the gradient function and Ĥ the gradient and negative Hessian of
the objective function Let A = {i1, . . . , im} the set of indices such that

a
(0)
ij

= a
(0)
ij+1. If m > 0 define the working matrix as A ∈ Rm×(kn+p) in which

the j−th row is the vector with its ij−th element equal to 1 and the
(ij + 1)−th element equal to −1, the remaining ones equal to 0.

Fix an initial value ν (in the first step, ν = (β̂
(0)

n , a0) and denote Ĥ = Ĥ(ν),

∇̂ = ∇̂(ν).

S1 Find the feasible direction as

η =

(
I− Ĥ−1At

(
AĤ−1At

)−1

A

)
Ĥ−1∇̂
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Additional results Algorithms

Algorithm

S2 If ‖η‖ < ε for some ε > 0 small enough, compute the Lagrange
multipliers

µ =
(

AĤ−1At
)−1

AĤ−1∇̂

Let µi be the i−th component of µ.

I If µi≥0, for all i ∈ A, then ν̂ = ν.
I If there exists at least one i ∈ A such that µi<0, determine the index

corresponding to the largest µi and remove it from A and go to S1.

S3 Compute

θ1 = min
ηi>ηi+1,i /∈A,1≤i≤kn−1

−(ai+1 − ai )

ηi+1 − ηi
and find the smallest r such that Ln(ν + 2−rη) > Ln(ν). Then replace ν by
ν̃ = ν + min(2−r , θ1)η), update A and A and go to S1.

Return
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Additional results Algorithms

Results when η0 = η0,1

Summary measures for β̂ MISE(η̂)

Estimator Bias MSE Cov.Prob

C0 cl 0.0002 0.0037 0.9340 0.0088
rob 0.0021 0.0045 0.9270 0.0096

C1 cl -0.5497 0.3492 0.0050 0.0265
rob -0.0016 0.0050 0.8850 0.0100

C2 cl -1.8359 4.2426 0.0690 54.3390
rob 0.0002 0.0051 0.9170 0.0103

C3 cl -1.9400 3.8376 0.0100 15.0401
rob 0.0043 0.0053 0.8900 0.0146
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Additional results Algorithms

Results

Model 1

Summary measures for β̂ MISE(η̂)

Estimator Bias SD MSE AS.SE Cov.Prob

C0 cl 0.0002 0.0608 0.0037 0.0568 0.9340 0.0088
rob 0.0021 0.0672 0.0045 0.0620 0.9270 0.0096

C1 cl -0.5497 0.2170 0.3492 0.0535 0.0050 0.0265
rob -0.0016 0.0706 0.0050 0.0591 0.8850 0.0100

C2 cl -1.8359 0.9343 4.2426 0.3781 0.0690 54.3390
rob 0.0002 0.0711 0.0051 0.0639 0.9170 0.0103

C3 cl -1.9400 0.2721 3.8376 0.1848 0.0100 15.0401
rob 0.0043 0.0727 0.0053 0.0598 0.8900 0.0146
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Additional results Boxplots

Boxplots for β̂, Model 1
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Additional results Boxplots

Boxplots for β̂, Model 1
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