A B C D F G H I K L M N O P Q R S T U V misc
| fda.usc-package | Functional Data Analysis and Utilities for Statistical Computing (fda.usc) |
| Adot | PCvM statistic for the Functional Linear Model with scalar response |
| aemet | aemet data |
| AKer.cos | Asymmetric Smoothing Kernel |
| AKer.epa | Asymmetric Smoothing Kernel |
| AKer.norm | Asymmetric Smoothing Kernel |
| AKer.quar | Asymmetric Smoothing Kernel |
| AKer.tri | Asymmetric Smoothing Kernel |
| AKer.unif | Asymmetric Smoothing Kernel |
| anova.hetero | ANOVA for heteroscedastic data |
| anova.onefactor | One-way anova model for functional data |
| anova.RPm | Functional ANOVA with Random Project. |
| anova.RPm.boot | Functional ANOVA with Random Project. |
| argvals | fda.usc internal functions |
| bcdcor.dist | Distance Correlation Statistic and t-Test |
| c.fdata | fda.usc internal functions |
| classif.DD | DD-Classifier Based on DD-plot for G levels and h dephts |
| classif.depth | Classifier from Functional Data |
| classif.gkam | Classification Fitting Functional Generalized Kernel Additive Models |
| classif.glm | Classification Fitting Functional Generalized Linear Models |
| classif.gsam | Classification Fitting Functional Generalized Additive Models |
| classif.kernel | Kernel Classifier from Functional Data |
| classif.knn | Kernel Classifier from Functional Data |
| classif.np | Kernel Classifier from Functional Data |
| classif.tree | Classification Fitting Functional Recursive Partitioning and Regression Trees |
| cond.F | Conditional Distribution Function |
| cond.mode | Conditional mode |
| cond.quantile | Conditional quantile |
| create.fdata.basis | Create Basis Set for Functional Data of fdata class |
| create.pc.basis | Create Basis Set for Functional Data of fdata class |
| create.pls.basis | Create Basis Set for Functional Data of fdata class |
| create.raw.fdata | Create Basis Set for Functional Data of fdata class |
| CV.S | The cross-validation (CV) score |
| dcor.dist | Distance Correlation Statistic and t-Test |
| dcor.test | Distance Correlation Statistic and t-Test |
| dcor.xy | Distance Correlation Statistic and t-Test |
| Depth | Provides the depth measure for functional data |
| depth.FM | Provides the depth measure for functional data |
| depth.FMp | Provides the depth measure for a list of p-functional data objects |
| depth.mode | Provides the depth measure for functional data |
| depth.modep | Provides the depth measure for a list of p-functional data objects |
| Depth.Multivariate | Provides the depth measure for multivariate data |
| Depth.pfdata | Provides the depth measure for a list of p-functional data objects |
| depth.RP | Provides the depth measure for functional data |
| depth.RPD | Provides the depth measure for functional data |
| depth.RPp | Provides the depth measure for a list of p-functional data objects |
| depth.RT | Provides the depth measure for functional data |
| Descriptive | Descriptive measures for functional data. |
| dev.S | The deviance score . |
| dfv.statistic | Delsol, Ferraty and Vieu test for no functional-scalar interaction |
| dfv.test | Delsol, Ferraty and Vieu test for no functional-scalar interaction |
| dim.fdata | fda.usc internal functions |
| dis.cos.cor | Proximities between functional data |
| fda.usc | Functional Data Analysis and Utilities for Statistical Computing (fda.usc) |
| fdata | Converts raw data or other functional data classes into fdata class. |
| fdata.bootstrap | Bootstrap samples of a functional statistic |
| fdata.cen | Functional data centred (subtract the mean of each discretization point) |
| fdata.deriv | Computes the derivative of functional data object. |
| fdata2fd | Converts fdata class object into fd class object |
| fdata2pc | Principal components for functional data |
| fdata2pls | Partial least squares components for functional data. |
| fdata2ppc | Principal components for functional data |
| fdata2ppls | Partial least squares components for functional data. |
| FDR | False Discorvery Rate (FDR) |
| flm.Ftest | F-test for the Functional Linear Model with scalar response |
| flm.test | Goodness-of-fit test for the Functional Linear Model with scalar response |
| fregre.basis | Functional Regression with scalar response using basis representation. |
| fregre.basis.cv | Cross-validation Functional Regression with scalar response using basis representation. |
| fregre.basis.fr | Functional Regression with functional response using basis representation. |
| fregre.bootstrap | Bootstrap regression |
| fregre.gkam | Fitting Functional Generalized Kernel Additive Models. |
| fregre.glm | Fitting Functional Generalized Linear Models |
| fregre.gsam | Fitting Functional Generalized Spectral Additive Models |
| fregre.lm | Fitting Functional Linear Models |
| fregre.np | Functional regression with scalar response using non-parametric kernel estimation |
| fregre.np.cv | Cross-validation functional regression with scalar response using kernel estimation. |
| fregre.pc | Functional Regression with scalar response using Principal Components Analysis. |
| fregre.pc.cv | Functional penalized PC regression with scalar response using selection of number of PC components |
| fregre.plm | Semi-functional partially linear model with scalar response. |
| fregre.pls | Functional Penalized PLS regression with scalar response |
| fregre.pls.cv | Functional penalized PLS regression with scalar response using selection of number of PLS components |
| fregre.ppc | Functional Penalized PC (or PLS) regression with scalar response |
| fregre.ppc.cv | Functional penalized PC (or PLS) regression with scalar response using selection of number of PC (or PLS) components |
| fregre.ppls | Functional Penalized PC (or PLS) regression with scalar response |
| fregre.ppls.cv | Functional penalized PC (or PLS) regression with scalar response using selection of number of PC (or PLS) components |
| Ftest.statistic | F-test for the Functional Linear Model with scalar response |
| func.mean | Descriptive measures for functional data. |
| func.mean.formula | Descriptive measures for functional data. |
| func.med.FM | Descriptive measures for functional data. |
| func.med.mode | Descriptive measures for functional data. |
| func.med.RP | Descriptive measures for functional data. |
| func.med.RPD | Descriptive measures for functional data. |
| func.med.RT | Descriptive measures for functional data. |
| func.trim.FM | Descriptive measures for functional data. |
| func.trim.mode | Descriptive measures for functional data. |
| func.trim.RP | Descriptive measures for functional data. |
| func.trim.RPD | Descriptive measures for functional data. |
| func.trim.RT | Descriptive measures for functional data. |
| func.trimvar.FM | Descriptive measures for functional data. |
| func.trimvar.mode | Descriptive measures for functional data. |
| func.trimvar.RP | Descriptive measures for functional data. |
| func.trimvar.RPD | Descriptive measures for functional data. |
| func.trimvar.RT | Descriptive measures for functional data. |
| func.var | Descriptive measures for functional data. |
| GCV.S | The generalized cross-validation (GCV) score. |
| h.default | Calculation of the smoothing parameter (h) for a functional data |
| IKer.cos | Integrate Smoothing Kernels. |
| IKer.epa | Integrate Smoothing Kernels. |
| IKer.norm | Integrate Smoothing Kernels. |
| IKer.quar | Integrate Smoothing Kernels. |
| IKer.tri | Integrate Smoothing Kernels. |
| IKer.unif | Integrate Smoothing Kernels. |
| influence.fdata | Functional influence measures |
| influence.quan | Quantile for influence measures |
| inprod.fdata | Inner products of Functional Data Objects o class (fdata) |
| int.simpson | Simpson integration |
| is.fdata | fda.usc internal functions |
| Ker.cos | Symmetric Smoothing Kernels. |
| Ker.epa | Symmetric Smoothing Kernels. |
| Ker.norm | Symmetric Smoothing Kernels. |
| Ker.quar | Symmetric Smoothing Kernels. |
| Ker.tri | Symmetric Smoothing Kernels. |
| Ker.unif | Symmetric Smoothing Kernels. |
| Kernel | Symmetric Smoothing Kernels. |
| Kernel.asymmetric | Asymmetric Smoothing Kernel |
| Kernel.integrate | Integrate Smoothing Kernels. |
| kgam.H | Fitting Functional Generalized Kernel Additive Models. |
| kmeans.assig.groups | K-Means Clustering for functional data |
| kmeans.center.ini | K-Means Clustering for functional data |
| kmeans.centers.update | K-Means Clustering for functional data |
| kmeans.fd | K-Means Clustering for functional data |
| lines.fdata | Plot functional data: fdata. |
| Math.fdata | fdata S3 Group Generic Functions |
| MCO | Mithochondiral calcium overload (MCO) data set |
| mdepth.HS | Provides the depth measure for multivariate data |
| mdepth.LD | Provides the depth measure for multivariate data |
| mdepth.MhD | Provides the depth measure for multivariate data |
| mdepth.RP | Provides the depth measure for multivariate data |
| mdepth.SD | Provides the depth measure for multivariate data |
| mdepth.TD | Provides the depth measure for multivariate data |
| metric.dist | Distance Matrix Computation |
| metric.hausdorff | Compute the Hausdorff distances between two curves. |
| metric.kl | Kullback-Leibler distance |
| metric.lp | Aproximates Lp-metric distances for functional data. |
| min.basis | Select the number of basis using GCV method. |
| min.np | Smoothing of functional data using nonparametric kernel estimation |
| missing.fdata | fda.usc internal functions |
| na.fail.fdata | A wrapper for the na.omit and na.fail function for fdata object |
| na.omit.fdata | A wrapper for the na.omit and na.fail function for fdata object |
| ncol.fdata | fda.usc internal functions |
| norm.fd | Aproximates Lp-norm for functional data. |
| norm.fdata | Aproximates Lp-norm for functional data. |
| nrow.fdata | fda.usc internal functions |
| omit.fdata | fda.usc internal functions |
| omit2.fdata | fda.usc internal functions |
| Ops.fdata | fdata S3 Group Generic Functions |
| order.fdata | A wrapper for the 'order' function |
| outliers.depth.pond | Detecting outliers for functional dataset |
| outliers.depth.trim | Detecting outliers for functional dataset |
| Outliers.fdata | Detecting outliers for functional dataset |
| outliers.lrt | Detecting outliers for functional dataset |
| outliers.thres.lrt | Detecting outliers for functional dataset |
| P.penalty | Penalty matrix for higher order differences |
| PCvM.statistic | PCvM statistic for the Functional Linear Model with scalar response |
| phoneme | phoneme data |
| plot.bifd | Plot functional data: fdata. |
| plot.fdata | Plot functional data: fdata. |
| poblenou | poblenou data |
| predict.classif | Predicts from a fitted classif object. |
| predict.classif.DD | Predicts from a fitted classif.DD object. |
| predict.fregre.fd | Predict method for functional linear model (fregre.fd class) |
| predict.fregre.fr | Predict method for functional response model |
| predict.fregre.gkam | Predict method for functional regression model |
| predict.fregre.glm | Predict method for functional regression model |
| predict.fregre.gsam | Predict method for functional regression model |
| predict.fregre.lm | Predict method for functional regression model |
| predict.fregre.plm | Predict method for functional regression model |
| print.classif | Summarizes information from kernel classification methods. |
| print.fregre.fd | Summarizes information from fregre.fd objects. |
| print.fregre.gkam | Summarizes information from fregre.gkam objects. |
| pvalue.FDR | False Discorvery Rate (FDR) |
| quantile.outliers.pond | Detecting outliers for functional dataset |
| quantile.outliers.trim | Detecting outliers for functional dataset |
| rangeval | fda.usc internal functions |
| rproc2fdata | Generate random process of fdata class. |
| rwild | Wild bootstrap residuals |
| S.basis | Smoothing matrix with roughness penalties by basis representation. |
| S.KNN | Smoothing matrix by nonparametric methods. |
| S.LLR | Smoothing matrix by nonparametric methods. |
| S.np | Smoothing matrix by nonparametric methods. |
| S.NW | Smoothing matrix by nonparametric methods. |
| semimetric.basis | Proximities between functional data |
| semimetric.deriv | Proximities between functional data (semi-metrics) |
| semimetric.fourier | Proximities between functional data (semi-metrics) |
| semimetric.hshift | Proximities between functional data (semi-metrics) |
| semimetric.mplsr | Proximities between functional data (semi-metrics) |
| semimetric.NPFDA | Proximities between functional data (semi-metrics) |
| semimetric.pca | Proximities between functional data (semi-metrics) |
| split.fdata | A wrapper for the split and unlist function for fdata object |
| summary.anova | Functional ANOVA with Random Project. |
| summary.classif | Summarizes information from kernel classification methods. |
| Summary.fdata | fdata S3 Group Generic Functions |
| summary.fdata.comp | Correlation for functional data by Principal Component Analysis |
| summary.fregre.fd | Summarizes information from fregre.fd objects. |
| summary.fregre.gkam | Summarizes information from fregre.gkam objects. |
| tecator | tecator data |
| title.fdata | Plot functional data: fdata. |
| unlist.fdata | A wrapper for the split and unlist function for fdata object |
| Var.e | Sampling Variance estimates |
| Var.y | Sampling Variance estimates |
| !=.fdata | fda.usc internal functions |
| *.fdata | fda.usc internal functions |
| +.fdata | fda.usc internal functions |
| -.fdata | fda.usc internal functions |
| /.fdata | fda.usc internal functions |
| ==.fdata | fda.usc internal functions |
| [.fdata | fda.usc internal functions |
| [.fdist | fda.usc internal functions |
| ^.fdata | fda.usc internal functions |